设为定义在R上的偶函数,当时,;当时,的图像时顶点在P(3,4),且过点A(2,2)的抛物线的一部分(1)求函数在上的解析式;(2)在右面的直角坐标系中直接画出函数的图像;(3)写出函数值域。
已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C (I)求曲线C的方程; (II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。
设函数,已知和为的极值点。 (I)求a和b的值; (II)设,试证恒成立。
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”. (I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为 ,求的分布列和数学期望; (II)根据频率分布直方图填写下面列联表,并判断是否有95%的把握认为“成绩优秀”与教学方式有关。
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,CE∥AB。 (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,且CD与平面PAD所成的角为45°,求二面角B—PE—A的正切值。
设函数 (I)对的图像作如下变换:先将的图像向右平移个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数的图像,求的解析式; (II)已知,且,求的值。