航天飞机升空后一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t的单位为s.(1)h(0),h(1),h(2)分别表示什么?(2)求第2s内的平均速度;(3)求第2s末的瞬时速度.
(本小题满分14分) 已知函数的图象过坐标原点O, 且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值
(本小题满分12分) 某单位建造一间地面面积为12 平方米的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过米 ,房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,如果墙高为3米,且不计房屋背面的费用.(1)把房屋总造价y表示成x的函数,并写出该函数的定义域;(2)当侧面的长度为多少时,总造价最低?最低造价是多少?
(本小题满分12分) 如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面;平面平面; (3)求三棱锥的体积.
(本小题满分12分) 已知函数最小正周期为. (1)求的值及函数的解析式;(2)若的三条边,,满足,边所对的角为.求角的取值范围及函数的值域.
(本小题满分12分) 已知抛物线:过点。 (1)求抛物线的方程,并求其准线方程; (2)是否存在平行于(为坐标原点)的直线,使得直线与抛物线有公共点,且直线与的距离等于?若存在,求出直线的方程;若不存在,说明理由。