△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求:(1)BC所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边上的垂直平分线DE的方程.
若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求: (1)a1+a2+a3+…+a11; (2)a0+a2+a4+…+a10.
在二项式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项. (1)求它是第几项; (2)求的范围.
在二项式n的展开式中,前三项的系数成等差数列,求展开式中的有理项.
如右图所示,一张平行四边形的硬纸片ABC0D中,AD=BD=1,AB=.沿它的对角线BD把△BDC0折起,使点C0到达平面ABC0D外点C的位置. (1)证明:平面ABC0D⊥平面CBC0; (2)如果△ABC为等腰三角形,求二面角A-BD-C的大小
如右图所示,等腰三角形△ABC的底边AB=6,高CD=3, 点E是线段BD上异于B、D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P-ACEF的体积. (1)求V(x)的表达式; (2)当x为何值时,V(x)取得最大值? (3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值