已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与同向.(Ⅰ)求的方程;(Ⅱ)若,求直线的斜率.
已知偶函数的最小值为0,求的最大值及此时x的集合。
对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(Ⅰ)试求b、c满足的关系式;(Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1,求证:<<;(Ⅲ)设bn=-,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008.
已知二次函数 直线l2与函数的图象以及直线l1、l2与函数的图象所围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为 (I)求函数的解析式; (II)定义函数的三条切线,求实数m的取值范围。
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2,求直线l的斜率的取值范围.
已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中.(Ⅰ)求a的值(Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式;(Ⅲ)记(Ⅱ)中数列的前项之和为,求证:.