(本小题满分16分) 若x,y满足,求: (1)的最小值;(2)的最大值;(3)的范围.
、已知关于x的一元二次函数,设集合={1,2,3},={-1,1,2,3,4,},分别从集合和中随机取一个数作为和.(1)求函数有零点的概率;(2)求函数在区间[1,+∞)上是增函数的概率.
、已知且,则,得的一个周期为2,类比上述结论,请写出下列两个函数的一个周期.(1)已知为正的常数,且,求的一个周期;(2)已知为正的常数,且,求的一个周期.
本小题共13分)对数列,规定为数列的一阶差分数列,其中N*).对正整数k,规定为的k阶差分数列,其中.(Ⅰ)若数列的首项,且满足,求数列的通项公式;(Ⅱ)对(Ⅰ)中的数列,若数列是等差数列,使得对一切正整数N*都成立,求;(Ⅲ)在(Ⅱ)的条件下,令设若成立,求最小正整数的值.
本小题共14分)已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点.(Ⅰ)求椭圆的方程;(Ⅱ)证明以线段为直径的圆经过焦点.
(本小题共13分)已知函数R).(Ⅰ)求函数的定义域,并讨论函数的单调性;(Ⅱ)问是否存在实数,使得函数在区间上取得最小值3?请说明理由.