如图,已知中,,平面,是的中点.(Ⅰ)若是的中点,求证:平面平面;(Ⅱ)若,求平面与平面所成的锐二面角的大小.
某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:
男生
女生
支持
不支持
方案一
200人
400人
300人
100人
方案二
350人
250人
150人
假设所有学生对活动方案是否支持相互独立.
(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
(Ⅲ)将该校学生支持方案的概率估计值记为 p 0 ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为 p 1 ,试比较 p 0 与 p 1 的大小.(结论不要求证明)
在 △ ABC 中, a + b = 11 ,再从条件①、条件②这两个条件中选择一个作为己知,求:
(Ⅰ)a的值:
(Ⅱ) sin C 和 △ ABC 的面积.
条件①: c = 7 , cos A = - 1 7 ;
条件②: cos A = 1 8 , cos B = 9 16 .
注:如果选择条件①和条件②分别解答,按第一个解答计分.
如图,在正方体 ABCD - A 1 B 1 C 1 D 1 中, E为 的中点.
(Ⅰ)求证: B C 1 / / 平面 A D 1 E ;
(Ⅱ)求直线 A A 1 与平面 A D 1 E 所成角的正弦值.
已知函数 f ( x ) = | 3 x + 1 | - 2 | x - 1 | .
(1)画出 y = f ( x ) 的图像;
(2)求不等式 f ( x ) > f ( x + 1 ) 的解集.
在直角坐标系 xOy 中,曲线 C 1 的参数方程为 ( t 为参数 ) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 2 的极坐标方程为 4 ρ cos θ - 16 ρ sin θ + 3 = 0 .
(1)当 k = 1 时, C 1 是什么曲线?
(2)当 k = 4 时,求 C 1 与 C 2 的公共点的直角坐标.