(本题满分13分)二次函数的图像顶点为,且图象在轴上截得线段长为.(1)求函数的解析式;(2)令①若函数在上是单调增函数,求实数的取值范围;②求函数在的最小值.
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
在△ABC中,已知角A为锐角,且.(1)、将化简成的形式;(2)、若,求边AC的长. ;
设椭圆过点,离心率为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足=,证明:点的轨迹与无关.
已知函数上为增函数.(1)求k的取值范围;(2)若函数的图象有三个不同的交点,求实数k的取值范围.
对任意都有(Ⅰ)求和的值;(Ⅱ)数列满足:=+,数列是等差数列吗?请给予证明;(Ⅲ)令试比较与的大小.