正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角. (1)试判断直线与平面的位置关系,并说明理由; (2)求二面角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
(本题满分14分) 在△ABC中,角A,B,C所对的边为a,b,c,已知sin=. (Ⅰ) 求cos C的值; (Ⅱ) 若△ABC的面积为,且sin2 A+sin2B=sin2 C,求c的值.
(本大题满分14分) 已知函数,其中,b∈R且b≠0。 (1)求的单调区间; (2)当b=1时,若方程没有实根,求a的取值范围; (3)证明:,其中.
.(本大题满分13分) 已知点是椭圆右焦点,点、分别是x轴、y上的动点,且满足,若点满足. (1)求点的轨迹的方程; (2)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交于点、(其中为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.
(本大题满分12分) 设,其中. (1)若有极值,求的取值范围; (2)若当,恒成立,求的取值范围.
(本小题满分12分) 三棱锥被平行于底面的平面所截得的几何体如图所示,截面为,,平面,,,为中点. (Ⅰ)证明:平面平面; (Ⅱ)求二面角的正弦值.