如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.(1)求证:BD⊥FG;(2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.(3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.
编号为的16名篮球运动员在某次训练比赛中的得分记录如下:
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
(Ⅱ)从得分在区间内的运动员中随机抽取2人, (i)用运动员的编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.
设的导函数为,若函数的图象关于直线对称,且. (Ⅰ)求实数,的值; (Ⅱ)求函数的极值。
已知直线 l : y = x + m , m ∈ R .
(I)若以点 M 2 , 0 为圆心的圆与直线 l 相切与点 P ,且点 P 在 y 轴上,求该圆的方程; (II)若直线 l 关于x轴对称的直线为 l ` ,问直线 l ` 与抛物线 C : x 2 = 4 y 是否相切?说明理由.
已知函数的图象经过其中为自然对数的底数,. (Ⅰ)求实数; (Ⅱ)求的单调区间; (Ⅲ)证明:对于任意的,都有成立.
已知双曲线:的右焦点为,在的两条渐近线上的射影分别为、,是坐标原点,且四边形是边长为的正方形. (Ⅰ)求双曲线的方程; (Ⅱ)过的直线交于、两点,线段的中点为,问是否能成立?若成立,求直线的方程;若不成立,请说明理由.