已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
已知函数(1)求曲线在点处的切线方程;(2)若过点可作曲线的三条切线,求实数的取值范围.
已知动圆过定点,且与定直线相切.(1)求动圆圆心的轨迹的方程;(2)若是轨迹的动弦,且过, 分别以、为切点作轨迹的切线,设两切线交点为,证明:.
如图,己知中,,,且 (1)求证:不论为何值,总有(2)若求三棱锥的体积.
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示. (1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试? (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求第4组至少有一名学生被考官A面试的概率?
频率分布表
(本小题满分12分)如图某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A、B,观察对岸的点C,测得,,且米。(1)求;(2)求该河段的宽度。