已知函数,数列满足,,.(1)数列的通项公式;(2)记,求;(3)设数列的通项公式为,求证:.
已知函数,,且为偶函数.设集合.(Ⅰ)若,记在上的最大值与最小值分别为,求;(Ⅱ)若对任意的实数,总存在,使得对恒成立,试求的最小值.
已知动圆Q过定点,且与直线相切,椭圆的对称轴为坐标轴,点为坐标原点,是其一个焦点,又点在椭圆上.(Ⅰ)求动圆圆心的轨迹的标准方程和椭圆的标准方程;(Ⅱ)若过的动直线交椭圆于点,交轨迹于两点,设为 的面积,为的面积,令,试求的最小值.
如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,2AE=BD=2.(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;(Ⅱ)求二面角D-EC-B的平面角的余弦值.
在△ABC中,内角所对的边分别是,且满足:又.(Ⅰ)求角A的大小; (Ⅱ)若a=2,求△ABC的面积S.
已知函数处的切线l与直线垂直,函数(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值。