(本小题满分15分)已知椭圆C的离心率e=,长轴的左右端点分别为A1(-2,0),A2(2,0).(I)求椭圆C的方程;(II)设直线x=my+1与椭圆C交于P,Q两点,直线A1P与A2Q交于点S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.
在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)求sinB+sinC的最大值.
在△ABC中,中线长AM=2.(1)若=-2,求证:++=0;(2)若P为中线AM上的一个动点,求·(+)的最小值.
已知函数f(x)=2sincos+cos.(1)求函数f(x)的最小正周期及最值;(2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.
如图,某中学甲、乙两班共有25名学生报名参加了一项 测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.(1)求这两个班学生成绩的中位数及x的值;(2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
已知(1)化简;(2)若是第三象限角,且cos()=,求的值.