(本小题满分15分)已知椭圆C的离心率e=,长轴的左右端点分别为A1(-2,0),A2(2,0).(I)求椭圆C的方程;(II)设直线x=my+1与椭圆C交于P,Q两点,直线A1P与A2Q交于点S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由.
设函数,其中向量,,. (1)求的单调递增区间; (2)在中,分别是角的对边,已知,的面积为,求的值.
已知数列中,,且.为数列的前项和,且. (1)求数列的通项公式; (2)设,求数列的前项的和; (3)证明对一切,有.
已知函数. (1)若,求曲线在点处的切线方程; (2)求的极值; (3)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.
如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|. (1)求椭圆E的方程; (2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由. (3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.
如图所示的多面体中, 是菱形,是矩形,平面,,. (1)求证:平面平面; (2)若二面角为直二面角,求直线与平面所成的角的正弦值.