在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中有放回地先后摸出两球,所得分数分别记为、,设为坐标原点,点的坐标为,记.(1)求随机变量=5的概率;(2)求随机变量的分布列和数学期望.
已知圆M的圆心在直线上,且过点、. (1)求圆M的方程; (2)设P为圆M上任一点,过点P向圆O:引切线,切点为Q.试探究: 平面内是否存在一定点R,使得为定值?若存在,求出点R的坐标;若不存在,请说 明理由.
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3. (1)求椭圆C的方程; (2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知一个圆经过直线l:与圆C:的两个交点,并且面积有最小值,求此圆的方程.
已知函数. (1)若曲线的一条切线的斜率是2,求切点坐标; (2)求在点处的切线方程.
已知:,不等式恒成立,:椭圆的焦点在x轴上.若命题为真命题,求实数m的取值范围.