在中,分别为内角的对边,满足.(1)求A的大小;(2)若,,求出的面积.
(本小题满分12分)已知函数, .(Ⅰ)求函数的最大值和最小值;(Ⅱ)设函数在上的图象与轴的交点从左到右分别为M,N,图象的最高点为P, 求向量与夹角的余弦值.
(本小题满分12分)如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+), =m· (m为常数),(1)求以M、N为焦点且过点P的椭圆方程;(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。
本小题满分12分)某商店搞促销活动,规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
如果取出的不是上述三种情况,则顾客需用50元购买商品.(1)求获得价值50元的商品的概率;(2)求获得奖品的概率;(3)如果顾客所买商品成本价为10元,假设有10 000人次参加这项促销活动,则商家可以获得的利润大约是多少?(精确到元)
(本小题满分12分)有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.
(本小题满分12分)已知函数f(x)=x3+ax2+ax-2(a∈R),(1)若函数f(x)在区间(-∞,+∞)上为单调增函数,求实数a的取值范围;(2)设A(x1,f(x1))、B(x2,f(x2))是函数f(x)的两个极值点,若直线AB的斜率不小于-,求实数a的取值范围.