(本小题满分12分)已知函数f(x)=x3+ax2+ax-2(a∈R),(1)若函数f(x)在区间(-∞,+∞)上为单调增函数,求实数a的取值范围;(2)设A(x1,f(x1))、B(x2,f(x2))是函数f(x)的两个极值点,若直线AB的斜率不小于-,求实数a的取值范围.
已知圆,问是否存在斜率为1的直线,使被圆C截得弦AB,以AB为直径的圆经过原点,若存在,写出直线的方程;若不存在,说明理由.
如图,圆与圆的半径都是1,=4,过动点P分别作圆、圆的切线PM、PN(M、N分别为切点),使得,试建立适当的坐标系,并求动点P的轨迹方程.
已知圆和直线交于P、Q两点且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径
已知且,求使方程有解时的的取值范围。
建造一个容积为立方米,深为米的无盖长方体蓄水池,池壁的造价为每平方米元,池底的造价为每平方米元,把总造价(元)表示为底面一边长(米)的函数。