盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰为1分的概率;(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.
设,,,,求的值.
已知平行四边形的顶点,,求顶点的坐标.
一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论: (1) 当船逆流行驶,与水流成钝角时; (2) 当船顺流行驶,与水流成锐角时; (3) 当船垂直于对岸行驶,与水流成直角时. 请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短
设,是平面内一组基底,证明:当时,恒有.