一条河的两岸平行,河的宽度m,一艘船从处出发到河对岸.已知船的速度km/h,水流速度km/h.要使船行驶的时间最短,那么船行驶的距离与合速度的比值必须最小.此时我们分三种情况讨论: (1) 当船逆流行驶,与水流成钝角时; (2) 当船顺流行驶,与水流成锐角时; (3) 当船垂直于对岸行驶,与水流成直角时. 请同学们计算上面三种情况,是否当船垂直于对岸行驶时,与水流成直角时,所用时间最短
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足. (Ⅰ)求抛物线C的焦点坐标和准线方程; (Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上; (Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得试建立适当的坐标系,并求动点 P的轨迹方程.
设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如图).现将△ADE沿DE折起,使二面角A-DE-B为45°,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_________.
A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使∠OPA=,则椭圆离心率的范围是_________
在抛物线y2=16x内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________