在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.求:(1)最多取两次就结束的概率; (2)整个过程中恰好取到2个白球的概率; (3)取球次数的分布列和数学期望.
已知函数对任意实数恒有且当时,有且. (1)判断的奇偶性; (2)求在区间上的最大值; (3)解关于的不等式.
已知点在圆上运动,,点为线段MN的中点. (1)求点的轨迹方程; (2)求点到直线的距离的最大值和最小值..
如图,四棱锥P-ABCD的底面是矩形,侧面PAD丄底面ABCD,.. (1)求证:平面PAB丄平面PCD (2)如果AB=BC=2,PB=PC=求四棱锥P-ABCD的体积.
设直线的方程为. (1)若在两坐标轴上的截距相等,求的方程; (2)若不经过第二象限,求实数的取值范围。
已知过曲线上任意一点作直线的垂线,垂足为,且. ⑴求曲线的方程; ⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.