厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
已知(a∈R,a为常数).(1)若x∈R,求f(x)的最小正周期;(2)若f(x)在上最大值与最小值之和为3,求a的值;
盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品、
本题14分)已知函数在上为增函数,且(1)求θ的值;(2)若在[1,+)上为单调函数,求m的取值范围;(3)设,若在[1,e]上至少存在一个x0,使得成立,求m的取值范围.
(本题13分)设,,函数,(1)设不等式的解集为C,当时,求实数取值范围;(2)若对任意,都有成立,求时,的值域;(3)设 ,求的最小值.
(本题12分)已知函数在处取得极值.(1) 求;(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.