厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
如图,在三棱锥中,△和△都为正三角形且,,,,分别是棱,,的中点,为的中点.(1)求异面直线和所成的角的大小;(2)求证:直线平面.
如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(1)求三棱锥的体积;(2)求与平面所成的角大小.
选修4-5:不等式选讲已知,不等式f(x)<4的解集为M.(1)求M;(2)当时,证明:.
选修4-4:坐标系与参数方程在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与曲线交于A,B两点.(1)求的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.
选修4-1:几何证明选讲如图,正方形ABCD边长为2,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(1)求证:AE=EB;(2)求的值.