厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
如图,已知是直角梯形,,,,平面.(1) 证明:;(2) 在上是否存在一点,使得∥平面?若存在,找出点,并证明:∥平面;若不存在,请说明理由;(3)若,求二面角的余弦值.
如图,在五棱锥中,,.(1)求证:;(2)求点E到面SCD的距离;(3)求二面角的大小.
已知:四棱锥P-ABCD,,底面ABCD是直角梯形,,且AB∥CD,, 点F为线段PC的中点, (1)求证: BF∥平面PAD;(2) 求证:。
如图,已知M,N分别是棱长为1的正方体的棱和的中点,求:(1)MN与所成的角;(2)MN与间的距离。
如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.(1)证明:EB∥平面PAD;(2)若PA=AD,证明:BE⊥平面PDC;(3)当PA=AD=DC时,求二面角E-BD-C的正切值.