厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
已知函数f(x)=4sin2(x+)+4sin2x-(1+2),x∈R.(1)求函数f(x)的最小正周期和图象的对称中心;(2)求函数f(x)在区间上的值域.
已知tan2θ=-2,π<2θ<2π.(1)求tanθ的值;(2)求的值
已知α∈,β∈且sin(α+β)=,cos β=-.求sin α.
已知函数f(x)=()x,函数y=f-1(x)是函数y=f(x)的反函数.(1)若函数y=f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由
设函数f(x)=x2+x-.(1)若函数的定义域为[0,3],求f(x)的值域;(2)若定义域为[a,a+1]时,f(x)的值域是[-,],求a的值