厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
已知函数,g(x)=,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数h(x)=f(x)+g(x),当a=0时,h(x)在(0,1)上有且只有一个极值点,求实数b的取值范围;(3)记函数F(x)=|f(x)|,证明:存在一条过原点的直线l与y=F(x)的图象有两个切点.
已知数列{an},其前n项和为Sn.(1)若对任意的n∈N,a2n﹣1,a2n+1,a2n组成公差为4的等差数列,且,求n的值;(2)若数列{}是公比为q(q≠﹣1)的等比数列,a为常数,求证:数列{an}为等比数列的充要条件为
已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.(1)求椭圆E的方程;(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;(ⅱ)若,求△ABM的面积.
某人2002年底花100万元买了一套住房,其中首付30万元,70万元采用商业贷款.贷款的月利率为5‰,按复利计算,每月等额还贷一次,10年还清,并从贷款后的次月开始还贷.(1)这个人每月应还贷多少元?(2)为了抑制高房价,国家出台“国五条”,要求卖房时按照差额的20%缴税.如果这个人现在将住房150万元卖出,并且差额税由卖房人承担,问:卖房人将获利约多少元?(参考数据:(1+0.005)120≈1.8)
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.(1)求证:MQ∥平面PAB;(2)若AN⊥PC,垂足为N,求证:MN⊥PD.