厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线过点P(-2,-4)的直线为参数)与曲线C相交于点M,N两点.(Ⅰ)求曲线C和直线的普通方程;(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a的值.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ); (Ⅱ).
已知函数有极小值.(Ⅰ)求实数的值;(Ⅱ)若,且对任意恒成立,求的最大值为.
若函数的图象与直线为常数)相切,并且切点的横坐标依次成等差数列,且公差为(I)求的值;(Ⅱ)若点是图象的对称中心,且,求点A的坐标