厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
在数列{}中,,并且对任意都有成立,令.(Ⅰ)求数列{}的通项公式;(Ⅱ)设数列{}的前n项和为,证明:
甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为。(1)求甲恰好得30分的概率;(2)设乙的得分为,求的分布列和数学期望;(3)求甲恰好比乙多30分的概率.
在中,角所对的边为,已知(1)求的值;(2)若的面积为,求的值
已知函数,(1)求该函数的最小正周期和最小值;(2)若,求该函数的单调递增区间。
(本小题满分14分)已知函数.(1)求证:函数在上是单调递增函数;(2)当时,求函数在上的最值;(3)函数在上恒有成立,求的取值范围.