厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
已知定义在上的函数,其中为常数。(1)若是函数的一个极值点,求的值;(2)若函数在区间上是增函数,求实数的取值范围;(3)若,在处取得最大值,求实数的取值范围。
设关于的一元二次方程(1)若是从四个数中任取一个数,是从三个数中任取一个数,求上述方程有实数根的概率;(2)若是从区间任取一个数,是从区间任取一个数,求上述方程有实数根的概率。
已知函数(1)画出函数的图像,写出的单调区间;(2)设,求在上的最大值
中,角的对边分别为,且。(1)求的值。(2)若,且,求a和c的值。
一正三棱锥A—BCD,其底面边长为a,侧棱长为2a,过点B作与侧棱AC、AD相交的截面,在这样的截面三角形中.(1)求周长的最小值;(2)求最小周长时的截面面积.