厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
(本小题满分12分)已知.(1)当,且有最小值2时,求的值;(2)当时,有恒成立,求实数的取值范围.
(本小题满分12分)已知函数y=f(x)= (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<.试求函数f(x)的解析式
(本小题满分12分)已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值.
(本小题满分12分)某产品生产单位产品时的总成本函数为.每单位产品的价格是134元,求使利润最大时的产量.
已知(1)求函数在[t,t+2](t>0)上的最小值(2)对一切恒成立,求实数a的取值范围。