厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
(本小题满分10分)在直角坐标系中,直线:(为参数),在极坐标系中(以原点为极点,以轴正半轴为极轴),圆C的方程:(1)求圆C的直角坐标方程;(2)设圆C与直线交于,两点,点的坐标,求
(本小题满分10分)已知:如图,中,,,是角平分线。求证:。
(本小题满分12分)已知函数,(1)若时,在其定义域内单调递增,求的取值范围;(2)设函数的图象与函数的图象交于,两点,过线段的中点作轴的垂线分别交、于点,,问是否存在点,使在处的切线与在处的切线平行?若存在,求的横坐标,若不存在,请说明理由。
(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,,坐标原点为,的面积为。(1)求实数的取值范围;(2)求关于的函数的表达式及的取值范围。
(本小题满分12分)在三棱锥中,是边长为4的正三角形,,,、分别是、的中点; (1)证明:平面平面; (2)求直线与平面所成角的正弦值。