厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
(本小题满分14分)已知函数,当时,当时,且对任意不等式恒成立. 1)求函数的解析式;2)设函数其中求在时的最大值
(本小题满分12分)已知椭圆上任意一点到两焦点距离之和为4,直线为该椭圆的一条准线. 1)求椭圆C的方程; 2)设直线与椭圆C交于不同的两点且(其中为坐标原点),求直线的斜率的取值范围.
(本小题满分12分)已知数列的前项和为,且1)求数列的通项公式;2)求数列的前项和为.
(本小题满分12分)如图,在长方体中,P在上,且. 1)求证: 2)求二面角的大小; 3)求点B到平面的距离.
(本小题满分12分)在中,为其锐角,且与是方程的两个根。 1)求的值; 2)求函数在时的最大值及取得最大值时的取值.