厂有215名工人接受了生产1000台GH型高科技产品的总任务,已知每台GH型产品由4个G型装置和3个H型装置配套组成.每个工人每小时能加工6个G型装置或2个H型装置.现将工人分成两组,每组分别加工一种装置.设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).(1)写出g(x),h(x)的解析式;(2)应怎样分组,才能使完成总任务时两组所需时间之和最少?
正方体棱长为1,以为坐标原点,以直线为横轴,直线为纵轴,直线为竖轴建立空间直角坐标系,如图. 为的重心,于.(I)求点的坐标.(II)求直线与平面所成的角的大小.
已知向量(I)若,求实数的值. (II)若,①求的所有对称轴方程.②求在上的单调增区间.
(本小题满分14分)已知数列的一个极值点。(1)证明:数列是等比数列;(II)求数列的通项公式;(III)设,求证:
(本小题满分13分)已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足,试推断:动直线DE是否过定点?证明你的结论。
(本小题满分12分)已知函数.(1)当时,求函数的单调区间和极值; (2)当时,试求方程根的个数.