已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.(Ⅰ)求的取值范围;(Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值.
已知函数,(Ⅰ)若是函数的一个极值点,求实数的值;(Ⅱ)设,当时,函数的图象恒不在直线上方,求实数的取值范围。
已知在与时都取得极值.(1)求的值;(2)若,求的单调区间和极值;
设函数在点处可导,试求下列各极限的值.1.;2.