已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
(1)已知集合,,若,求实数m的取值范围?(2)求值
( 12分)函数 (1)若,求的值域(2)若在区间上有最大值14。求的值; (3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间
已知函数,且 (1)判断的奇偶性,并证明;(2)判断在上的单调性,并用定义证明;(3)若,求的取值范围。
(本小题满分14分) 已知函数的图像经过点.(1)求该函数的解析式;(2)数列中,若,为数列的前项和,且满足,证明数列成等差数列,并求数列的通项公式;(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成如下数表:
记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当时,求上表中第行所有项的和.
(本小题满分14分)