已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
(本小题满分12分)已知函数的最小正周期为,且.(1)求的表达式;(2)设,,,求的值.
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于.(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种曲线;(Ⅱ)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合)试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)已知函数(Ⅰ)当时,求的最小值;(Ⅱ)若函数在区间(0,1)上为单调函数,求实数的取值范围
(本题满分12分,第(Ⅰ)问6分,第(Ⅱ)问6分)如图一,是正三角形,是等腰直角三角形,.将沿折起,使得, 如图二,为的中点(Ⅰ)求证:;(Ⅱ)求的面积;(Ⅲ)求三棱锥的体积.
(本题满分13分,第(Ⅰ)问6分,第(Ⅱ)问7分)已知椭圆及直线:.(Ⅰ)当直线和椭圆有公共点时,求实数的取值范围.(Ⅱ)求直线被椭圆截得的最长弦所在的直线方程.