已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
已知{}是公比为q的等比数列,且成等差数列.(Ⅰ)求q的值;(Ⅱ)设{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由..
设数列{an}的首项a1=a≠,且,记,n==l,2,3,…·.(I)求a2,a3;(II)判断数列{bn}是否为等比数列,并证明你的结论;(III)求
已知展开式中的二项式系数的和比展开式的二项式系数的和大,求展开式中的系数最大的项和系数量小的项.
已知的展开式中,二项式系数最大的项的值等于,求.
已知的展开式中, 的系数是的系数与的系数的等差中项,求;