已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
(本小题满分14分)已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点的直线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)当直线的斜率为1时,求的面积;(Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线的方程.
(本小题满分14分)已知函数.(Ⅰ)若时,取得极值,求的值;(Ⅱ)求在上的最小值;(Ⅲ)若对任意,直线都不是曲线的切线,求的取值范围.
(本小题满分13分)在四棱锥中,底面是正方形,与交于点,底面,为的中点. (Ⅰ)求证:∥平面;(Ⅱ)求证:;(Ⅲ)若在线段上是否存在点,使平面?若存在,求出 的值,若不存在,请说明理由.
(本小题满分13分)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的最大值和最小值.
(本小题满分13分)已知在等比数列中,,且是和的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.