已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
几何证明选讲如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1);(2)AB2=BE•BD-AE•AC.
已知函数(),其中.(1)当时,讨论函数的单调性;(2)若函数仅在处有极值,求的取值范围;(3)若对于任意的,不等式在上恒成立,求的取值范围.
已知椭圆:的左、右焦点分别为离心率,点在且椭圆E上, (Ⅰ)求椭圆的方程; (Ⅱ)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.(Ⅲ)试用表示的面积,并求面积的最大值
如图,已知平面,平面,△为等边三角形,,为的中点.(1) 求证:平面;(2) 求证:平面平面;(3) 求直线和平面所成角的正弦值.
甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大.(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;(Ⅱ)求测试结束后通过的人数的数学期望.