已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
在中,角所对的边分别为,,,且.(I)求;(II)若,且,求.
如图,在底面是正方形的四棱锥–中,平面⊥平面,===2.(I)求证:⊥;(II)求直线与平面所成的角的正弦值.
(Ⅰ)求数列的通项公式; (Ⅱ)记,求使成立的的最大值
(I)求证:;(II)求直线与面所成角的余弦值大小.
(1) 求实数a、b间满足的等量关系; (2) 求线段PQ长的最小值;(3) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.