已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
在上海世博会期间,小红计划对事先选定的个场馆进行参观.在她选定的个场馆中,有个场馆分布在区,个场馆分布在区,个场馆分布在区.已知区的每个场馆的排队时间为小时,区和区的每个场馆的排队时间为小时.参观前小红因事只能从这个场馆中随机选定个场馆进行参观.(Ⅰ)求小红每个区都参观个场馆的概率;(Ⅱ)设小红排队时间总和为(小时),求随机变量的分布列和数学期望.
设.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)若锐角中,的对边分别为且,,,求角及边.
(本小题满分14分)已知函数(Ⅰ)若函数是定义域上的单调函数,求实数的最小值;(Ⅱ)方程有两个不同的实数解,求实数的取值范围;(Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标为,有成立?若存在,请求出的值;若不存在,说明理由.
(本小题满分14分)已知直线过椭圆的右焦点,抛物线的焦点为椭圆的上顶点,且直线交椭圆于两点.(1)求椭圆的方程;(2)若直线交轴于点,且,当变化时, 的值是否为定值?若是,求出这个定值,若不是,说明由.
(本小题满分13分) 已知数列的前项和是,且.(1)求数列的通项公式;(2)设,求适合方程的正整数的值.