已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
.(本小题满分12分)如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点。(1)证明:SO⊥平面ABC;(2)求二面角A-SC-B的余弦值.
(本小题满分12分)已知向量=(sin2x,cosx),=(,2cosx)(x∈R),f(x)=(1)求f(x)的单调递增区间;(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=,B=,求b的值。
( (本小题满分12分)设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点,关于直线的对称点为,求的取值范围.
( (本小题满分12分)设函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
( (本小题满分12分)已知数列(1)(2)