已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
某校从参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),...,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图,统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(2)若从60名学生中随机抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用表示抽取结束后的总记分,求的分布列和数学期望.
已知数列的首项,且满足.(1)求数列的通项公式;(2)设,求数列的前n项和.
【选修4-5:不等式选讲】已知函数.(1)请写出函数在每段区间上的解析式,并在图上的直角坐标系中作出函数的图象;(2)若不等式对任意的实数恒成立,求实数的取值范围.
【选修4-4:坐标系与参数方程】已知曲线的参数方程为:为参数),直线的参数方程为:为参数),点,直线与曲线交于两点.(1)写出曲线和直线在直角坐标系下的标准方程;(2)求的值.
【选修4-1:几何证明选讲】如图,在中,于,于,交于点,若,.(1)求证:;(2)求线段的长度.