已知椭圆的对称轴为坐标轴,焦点是(0,),(0,),又点在椭圆上.(1)求椭圆的方程;(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.
(本小题满分13分)已知函数.(1)当且,时,试用含的式子表示,并讨论的单调区间;(2)若有零点,,且对函数定义域内一切满足的实数有. ①求的表达式;②当时,求函数的图象与函数的图象的交点坐标.
(本小题满分12分)已知数列的前n项和为 (n∈N*),且.数列满足,,,n=2,3,….(Ⅰ)求数列 的通项公式;(Ⅱ)求数列 的通项公式;(Ⅲ)证明:对于 ,.
(本小题满分12分)如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
(本小题满分12分)某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为,二等品率为;B型产品的一等品率为,二等品率为。生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元。设生产各件产品相互独立。(1)求生产4件A型产品所获得的利润不少于10万元的概率;(2)记(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求的分布列及期望值.
(本小题满分12分)已知中,角的对边分别为,且的面积,(1)求的取值范围;(2)求函数的最值.