已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,过椭圆的右焦点的动直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若线段中点的横坐标为,求直线的方程;(3)若线段的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.
已知函数f(x)=(ax+1)ex.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.
已知函数f(x)=x3+ax2+bx+a2(a,b∈R).(1)若函数f(x)在x=1处有极值10,求b的值;(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.
已知函数f(x)=xlnx-x2.(1)当a=1时,函数y=f(x)有几个极值点?(2)是否存在实数a,使函数f(x)=xlnx-x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)当a≠时,求函数y=f(x)的单调区间与极值.
已知函数f(x)=sinx,g(x)=mx- (m为实数).(1)求曲线y=f(x)在点P(),f()处的切线方程;(2)求函数g(x)的单调递减区间;(3)若m=1,证明:当x>0时,f(x)<g(x)+.