已知函数f(x)=x3+ax2+bx+a2(a,b∈R).(1)若函数f(x)在x=1处有极值10,求b的值;(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.
已知 设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围. [解题思路]:“P或Q”是真命题,“P且Q”是假命题,根据真假表知,P,Q之中一真一假,因此有两种情况,要分类讨论.
分别指出下列复合命题的形式及构成它的简单命题:(1)3是质数或合数.(2)他是运动员兼教练员.(3)相似三角形不一定是全等三角形.
写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假。(1)p:5是17的约数,q:5是15的约数.(2)p:方程x2-1=0的解是x="1, " q:方程x2-1=0的解是x=-1,(3)p:不等式的解集为R,q:不等式的解集为
分别写出下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:(1)p:是无理数,q: 大于是2(2)p:,q:(3)p: , q:
分别写出下列各组命题构成的“p或q”“p且q”“非p”形式的复合命题:(1)p:连续的三个整数的乘积能被2整除, q:连续的三个整数的乘积能被3整除.(2)p:对角线互相垂直的四边形是菱形, q:对角线互相平分的四边形是菱形.