(在等比数列中,公比,已知,求与。
已知圆:,点(1, 0),点在圆上运动, 的垂直平分线交于点. (1) 求动点的轨迹的方程; (2)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率; (3)过点的动直线交曲线于两点,求证:以为直径的圆恒过定点
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值(如:区间[100,110)的中点值为=105)作为这组数据的平均分,据此,估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
设命题:函数的定义域为;命题:当时,函数恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求的取值范围.
某校数学教师为调查本校2014届学生的高考数学成绩情况,用简单随机抽样的方法抽取20名学生的成绩,样本数据的茎叶图如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:
(1)求表中的值及分数在范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在内为及格); (2)从大于等于110分的成绩中随机选2个成绩,求这2个成绩的平均分不小于130分的概率。
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为.(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程.[