如图所示,设铁路AB=50,B、C之间距离为10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A到C最省?
对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2. (Ⅰ)试求b、c满足的关系式; (Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1, 求证:<<; (Ⅲ)设bn=-,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008.
已知二次函数 直线l2与函数的图象以及直线l1、l2与函数的图象所围成的封闭图形如图中阴影所示,设这两个阴影区域的面积之和为 (I)求函数的解析式; (II)定义函数的三条切线,求实数m的取值范围。
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P. (Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程; (Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F, 若△OEF的面积不小于2,求直线l的斜率的取值范围.
已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中. (Ⅰ)求a的值 (Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式; (Ⅲ)记(Ⅱ)中数列的前项之和为,求证:.
如果是函数的一个极值,称点是函数的一个极值点.已知函数 (1)若函数总存在有两个极值点,求所满足的关系; (2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围. (3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.