某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.
设函数f(x)=-sin(2x-). (I)求函数f(x)的最大值和最小值; (Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,c=3,f()=,若,求△ABC的面积.
设函数f(x)=|2x+1|-|x-2|. (Ⅰ)求不等式的解集; (Ⅱ)若{x|f(x)≥-t}∩{y|0≤y≤1}≠,求实数t的取值范围.
已知在直角坐标系xOy中,圆锥曲线C的参数方程为(θ为参数),直线l经过定点P(2,3),倾斜角为. (Ⅰ)写出直线l的参数方程和圆的标准方程; (Ⅱ)设直线l与圆相交于A,B两点,求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的平分线,△ACD的外接圆交于BC于点E,AB=2AC. (Ⅰ)求证:BE=2AD; (Ⅱ)当AC=1,EC=2时,求AD的长.
已知函数f(x)=ln-a+x(a>0). (Ⅰ)若=,求f(x)图像在x=1处的切线的方程; (Ⅱ)若的极大值和极小值分别为m,n,证明:.