(本小题满分12分)已知椭圆C:过点,离心率为,点分别为其左右焦点.(1)求椭圆C的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,且?若存在,求出该圆的方程;若不存在,请说明理由.
已知过点的动直线与抛物线相交于两点.当直线的斜率是时,. (1)求抛物线的方程; (2)设线段的中垂线在轴上的截距为,求的取值范围.
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下:
(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率; (2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。
如图,四棱柱中,平面,底面是边长为的正方形,侧棱. (1)求三棱锥的体积; (2)求直线与平面所成角的正弦值; (3)若棱上存在一点,使得,当二面角的大小为时,求实数的值.
已知数列的各项均为正数,前项和为,且 (1)求证数列是等差数列; (2)设…,求。
选修4-5:不等式选讲 已知关于的不等式:的整数解有且仅有一个值为2. (1)求整数的值;(2)在(1)的条件下,解不等式:.