如图,在三棱柱中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E —ABC的体积.
已知△ABC中,a,b,c分别为角A,B,C的对边,a2+b2<c2,且sin(2C-)= (1)求角C的大小; (2)求的取值范围。
已知函数,其中为实数, (1)若,求函数的最小值; (2)若方程在上有实数解,求的取值范围; (3)设…,均为正数,且,求证:.
已知椭圆:的离心率,是椭圆上两点,是线段的中点,线段的垂直平分线与椭圆相交于两点. (1)求直线的方程; (2)是否存在这样的椭圆,使得以为直径的圆过原点?若存在,求出该椭圆方程;若不存在,请说明理由.
如图,在四棱锥中, ,,,平面平面,是线段上一点,,,. (1)证明:平面; (2)设三棱锥与四棱锥的体积分别为与,求的值.
有甲、乙两个学习小组,每个小组各有四名学生,在一次数学考试中,成绩情况如下表:
(1)用茎叶图表示两组的成绩情况; (2)分别从甲、乙两组中随机选取一名学生的成绩,求选取的这两名学生中,至少有一名学生的成绩在90以上的概率.