已知函数.(Ⅰ)若,求在点处的切线方程;(Ⅱ)求函数的极值点.
已知双曲线的离心率e=2,且、分别是双曲线虚轴的上、下端点 (Ⅰ)若双曲线过点(,),求双曲线的方程;(Ⅱ)在(Ⅰ)的条件下,若、是双曲线上不同的两点,且,求直线的方程
椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)若,求m的取值范围.
已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为且过点(4,-)(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:点M在以F1F2为直径的圆上;(3)求△F1MF2的面积.
已知圆:.(1)直线过点,且与圆交于、两点,若,求直线的方程;(2)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
已知方向向量为的直线过椭圆C:=1(a>b>0)的焦点以及点(0,),椭圆C的中心关于直线的对称点在椭圆C的右准线上。⑴求椭圆C的方程。⑵过点E(-2,0)的直线交椭圆C于点M、N,且满足,(O为坐标原点),求直线的方程。