已知椭圆E:的离心率,并且经过定点(1)求椭圆E 的方程;(2)问是否存在直线y=-x+m,使直线与椭圆交于A, B 两点,满足,若存在求m 值,若不存在说明理由.
如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,点(,)在椭圆C上,直线l为椭圆C的左准线.(1) 求椭圆C的方程;(2) 点P是椭圆C上的动点,PQ ⊥l,垂足为Q.是否存在点P,使得△F1PQ为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
设有半径为3的圆形村落,、两人同时从村落中心出发。一直向北直行;先向东直行,出村后一段时间,改变前进方向,沿着与村落边界相切的直线朝所在的方向前进。(1)若在距离中心5的地方改变方向,建立适当坐标系,求:改变方向后前进路径所在直线的方程(2)设、两人速度一定,其速度比为,且后来恰与相遇.问两人在何处相遇?(以村落中心为参照,说明方位和距离)
如图,A点在x轴上方,外接圆半径,弦在轴上且轴垂直平分边,(1)求外接圆的标准方程(2)求过点且以为焦点的椭圆方程
在平行四边形中,,点是线段的中点,线段与交于点,(1)求直线的方程(2)求点的坐标.
(本小题满分14分)已知函数=,.(1)求函数在区间上的值域;(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.