为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少400吨,最多600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
(本小题满分10分)已知数列的前项和为,,(I)求数列的通项公式;(II)设,求的值.
(本小题满分10分)一架飞机从A地飞到B到,两地相距700km.飞行员为了避开某一区域的雷雨云层,从机场起飞后,就沿与原来的飞行方向成角的方向飞行,飞行到中途,再沿与原来的飞行方向成夹角的方向继续飞行直到终点.这样飞机的飞行路程比原来路程700km远了多少?()
(本小题满分12分)已知关于的一元二次函数,(1)设集合,分别从集合和中随机取一个数为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数在区间上是增函数的概率
选修4-5:不等式选讲已知函数不等式的解集为(1)求实数a的值;(2)若对一切实数x恒成立,求实数c的取值范围。
选修4-1:几何证明选讲如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交于⊙O于点E,D,连接EC,CD。(1)试判断直线AB与⊙O的位置关系,并加以证明;(2)若,⊙O的半径为3,求OA的长。