一个各项都是正数的无穷等差数列{an}, a1和a3是方程x2-8x+7=0的两个根,求它的通项公式
用数学归纳法证明:n∈N*时,++…+=.
设a,b,c为任意三角形三边长,I=a+b+c,S=ab+bc+ca,试证:I2<4S.
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,…),a1=1.(1)设bn=an+1-2an(n=1,2,…),求证:数列{bn}是等比数列;(2)设cn=(n=1,2,…),求证:数列{cn}是等差数列;(3)求数列{an}的通项公式及前n项和公式.
已知a>0,b>0,且a+b=1,试用分析法证明不等式≥.
已知a>0,求证: -≥a+-2.