已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.
椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点. (1)求椭圆的方程; (2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.
已知函数在是增函数,在为减函数. (1)求,的表达式; (2)求证:当时,方程有唯一解; (3)当时,若在内恒成立,求的取值范围.
某百货超市欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用万元满足.已知万件该商品的进价成本为万元,商品的销售价格定为元/件. (1)将该商品的利润万元表示为促销费用万元的函数; (2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?
已知函数. (1)求曲线在点处的切线方程; (2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
设函数. (1)若函数在时取得极小值,求的值; (2)若函数在定义域上是单调函数,求的取值范围.