已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为.(1)若,求点的坐标;(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:,,,,,. (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知函数,且函数的图象相邻两条对称轴之间的距离为. (Ⅰ)求的值;(Ⅱ)若函数在区间上单调递增,求k的取值范围.
已知数列为方向向量的直线上,(I)求数列的通项公式;(II)求证:(其中e为自然对数的底数); (III)记 求证:
已知为锐角,且, 函数,数列的首项,. (1)求函数的表达式;(2)求证:; (3)求证:.
已知是△ABC的两个内角,(其中是互相垂直的单位向量),若。(1)试问是否为定值,若是定值,请求出,否则说明理由;(2)求的最大值,并判断此时三角形的形状。