已知圆的方程为:,直线的方程为,点在直线上,过点作圆的切线,切点为.(1)若,求点的坐标;(2)若点的坐标为,过点的直线与圆交于两点,当时,求直线的方程;(3)求证:经过(其中点为圆的圆心)三点的圆必经过定点,并求出所有定点的坐标.
( (本小题满分12分)设椭圆的离心率为,点是椭圆上的一点,且点到椭圆两焦点的距离之和为4.(1)求椭圆的方程;(2)椭圆上一动点,关于直线的对称点为,求的取值范围.
( (本小题满分12分)设函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
( (本小题满分12分)已知数列(1)(2)
( (本小题满分12分)在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,PB=2,PD=4,E是PD的中点(1)求证:AE⊥平面PCD;(2)若F是线段BC的中点,求三棱锥F-ACE的体积。
(本小题满分12分)已知向量=(sin2x,cosx),=(,2cosx)(x∈R),f(x)=(1)求f(x)的单调递增区间;(2)在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=2,a=,B=,求b的值。