已知函数(为常数,)(1)若是函数的一个极值点,求的值;(2)求证:当时,在上是增函数;(3)若对任意的,总存在,使不等式成立,求正实数的取值范围.
已知函数,其中为常数 (1)证明:函数在R上是减函数. (2)当函数是奇函数时,求实数的值.
已知集合,集合,求
如图,在四棱锥中,底面为正方形,侧棱底面,,垂足为,是的中点. (Ⅰ)证明:∥平面; (Ⅱ)证明:平面⊥平面.
平行四边形的边和所在的直线方程分别是、,对角线的交点是. (Ⅰ)求边所在直线的方程; (Ⅱ)求直线和直线之间距离; (Ⅲ) 平行四边形的面积.
棱长都相等的三棱锥的四个顶点都在同一外球面上,棱长为; (Ⅰ) 求此三棱锥的表面积; (Ⅱ) 求此三棱锥的高; (Ⅲ) 求此球的半径.