已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,,且. (1)求a的值; (2)若对于任意,总存在,使,求b的值; (3)在(2)中,记是所有中满足, 的项从小到大依次组成的数列,又记为的前n项和,的前n项和,求证:≥
已知函数为自然对数的底,为常数),若函数处取得极值,且.(1)求实数的值;(2)若函数在区间[1,2]上是增函数,求实数的取值范围。
设为实数,函数 (I)求的单调区间与极值;(II)求证:当时,
如图四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。(1)求直线AD与平面PBC的距离。 (2)若AD=,求二面角A-EC-D的平面角的余弦值。
甲、乙两人独立解出某一道数学题的概率相同。已知该题被甲或乙解出的概率为0.36。求:(I)甲独立解出该题的概率。(II)求解出该题人数的数学期望。
已知函数(1)写出的单调区间;(2)设在[0,]上的最大值。