某次考试中,从甲、乙两个班各随机抽取10名学生的成绩进行统计分析,学生成绩的茎叶图如图所示,成绩不小于90分为及格.(1)从每班抽取的学生中各随机抽取一人,求至少有一人及格的概率(2)从甲班10人中随机抽取一人,乙班10人中随机抽取两人,三人中及格人数记为X,求X的分布列和期望.
已知直线:为参数), 曲线(为参数). (1)设与相交于两点,求; (2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程; (2)若直线l与曲线C相交于A、B两点,且,试求实数m值.
已知直线的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为. (1)把圆C的极坐标方程化为直角坐标方程; (2)将直线向右平移h个单位,所得直线与圆C相切,求h.
在直角坐标系xoy中,曲线C1的参数方程为(t为参数),P为C1上的动点,Q为线段OP的中点. (1)求点Q的轨迹C2的方程; (2)在以O为极点,x轴的正半轴为极轴(两坐标系取相同的长度单位)的极坐标系中,N为曲线p=2sinθ上的动点,M为C2与x轴的交点,求|MN|的最大值.