已知椭圆:()的上顶点为,过的焦点且垂直长轴的弦长为.若有一个菱形的顶点、在椭圆上,该菱形对角线所在直线的斜率为.(1)求椭圆的方程;(2)当直线过点时,求直线的方程;(3)当时,求菱形面积的最大值.
已知函数 f ( x ) = A sin ( 3 x + φ ) ( A > 0 , x ∈ ( - ∞ , + ∞ ) , 0 < φ < π ) 在x= x = π 12 时取得最大值4.. (1)求 f ( x ) 的最小正周期; (2)求 f ( x ) 的解析式; (3)若 f ( 2 3 α + π 12 ) = 12 5 .求 tan 2 α 的值.
如图,在△OAB中,已知P为线段AB上的一点,且||=2||. (Ⅰ)试用,表示; (Ⅱ)若=3,=2,且∠AOB=60°,求•的值.
已知 sin α = 5 5 ,且 α 是第一象限. (1)求 tan ( π + α ) + sin π 2 - α cos π - α 的值; (2)求 tan ( α + π 4 ) 的值.
已知函数f(x)=sinx+cosx. (1)若f(x)=2f(﹣x),求的值; (2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.
在数列{an}中,a1=1,an+1=2an+2n. (1)设bn=,证明:数列{bn}是等差数列; (2)求数列{an}的前n项和Sn, (3)设cn=,求数列{cn}的最大项.