某中学高三年级从甲(文)、乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.(1)求和的值;(2)计算甲组7位学生成绩的方差;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.
若不等式的解集是, (1) 求的值; (2) 求不等式的解集.
定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=. (1)求f (x)在[-1, 1]上的解析式; (2)证明f (x)在(—1, 0)上时减函数; (3)当λ取何值时, 不等式f (x)>λ在R上有解?
已知函数的图像在点处的切线方程为. (Ⅰ)求实数的值; (Ⅱ)设是[)上的增函数, 求实数的最大值.
设函数. (1)对于任意实数,恒成立,求的最大值; (2)若方程有且仅有一个实根,求的取值范围.
已知函数是定义在上的奇函数,当时,,且。 (1)求的值,(2)求的值.