(本小题满分12分)假设有5个条件很类似的女孩,把她们分别记为A,C,J,K,S。她们应聘秘书工作,但只有3个秘书职位,因此5人中仅有三人被录用。如果5人被录用的机会均等,分别计算下列事情的概率有多大?(1)女孩K得到一个职位(2)女孩K和S各得到一个职位(3)女孩K或S得到一个职位
设数列的前项和为,,.⑴求证:数列是等差数列. ⑵设是数列的前项和,求使 对所有的都成立的最大正整数的值.
在△ABC中,已知角A、B、C所对的边分别是a、b、c,边c=,且tanA+tanB=tanA·tanB-,又△ABC的面积为S△ABC=,求a+b的值。
已知集合,又A∩B={x|x2+ax+b<0},求a+b的值。
在锐角三角形中,边a、b是方程x2-2x+2=0的两根,角A、B满足2sin(A+B)-=0,求角C的度数,边c的长度及△ABC的面积.
设是满足不等式≥的自然数的个数.(1)求的函数解析式;(2),求;(3)设,由(2)中及构成函数,,求的最小值与最大值.