在的展开式中,把叫做三项式系数.(1)当n=2时,写出三项式系数的值;(2)类比二项式系数性质,给出一个关于三项式系数的相似性质,并予以证明;(3)求的值.
已知直线过椭圆E:的右焦点,且与E相交于两点. (1)设(为原点),求点的轨迹方程; (2)若直线的倾斜角为,求的值.
设数列 (1)求 (2)求的表达式。
20090507
如图所示,在直三棱柱中,,,,,是棱的中点. (1)证明:平面; (2)求二面角的余弦值.
某班从6名班干部(其中男生4人,女生2人)中选3人参加学校学生会的干部竞选. (1)设所选3人中女生人数为,求的分布列 (2)在男生甲被选中的情况下,求女生乙也被选中的概率.
已知函数. (Ⅰ)若函数在[1,2]上是减函数,求实数的取值范围; (Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由; (Ⅲ)当时,证明: