已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.
.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验. (1)求选取的2组数据恰好是不相邻2天数据的概率; (2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程; (3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠? (注: )
一个多面体的三视图和直观图如图所示,其中、分别是、的中点,是上的一动点。 (1)求证; (2)当点落在什么位置时,平行于平面? (3)求三棱锥的体积。
中内角、、的对边分别为、、,向量m,n且mn (1)求锐角的大小; (2)如果,求的面积的最大值。
设数列前项和为,点均在函数图象上。 (1)求数列的通项公式; (2)设,是数列的前项和,求使得对所有都成立的最小正整数。
(本小题满分12分) 椭圆G:的左、右焦点分别为,M是椭圆上的一点,且满足=0. (1)求离心率e的取值范围; (1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5. ①求此时椭圆G的方程; ②设斜率为的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点, 问:A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范 围;若不能,请说明理由.