.对某电子元件进行寿命追踪调查,情况如下.
(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电子元件寿命在100~400 h以内的在总体中占的比例;(4)估计电子元件寿命在400 h以上的在总体中占的比例.
(本小题满分12分)甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区二模考试的数学科目成绩,采用分层抽样抽取了105名学生的成绩,并作出了部分频率分布表如下:(规定考试成绩在[120,150]内为优秀)甲校:
乙校:
(1)计算x,y的值,并分别估计两上学校数学成绩的优秀率;(2)由以上统计数据填写下面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
附:
(本小题满分10分)在△ABC中,a、b、c分别是角A、B、C的对边,,且.(1)求角A的大小;(2)求的取值区间。
(已知函数(常数)的图像过点、两点.(1)求的解析式;(2)若函数的图像与函数的图像关于直线对称,若不等式恒成立,求实数的取值范围;(3)若是函数图像上的点列,是正半轴上的点列,为坐标原点,是一系列正三角形,记它们的边长是,探求数列的通项公式,并说明理由.
(某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, ,用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)
(已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线上。(1)求椭圆的标准方程(2)求以OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。