(某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, ,用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)
设Sn为数列{an}为前n项和,对任意的都有(m为常数且m>0) (1)求证:{an}为等比数列; (2)设数列{an}的公比q=f(m),数列{bn}满足,求数列{bn}的通项公式; (3)在(2)的条件下,求数列的前n项和Tn。
已知函数f(x)和g(x)的图象关于原点对称,且 (1)求函数g(x)的解析式; (2)解不等式; (3)若在[-1,1]上是增函数,求实数的取值范围。
在△ABC中,A、B、C的对边分别为a、b、c,且满足。(1)求B的大小; (2)设,且的最大值为5,求k的值。
设命题p:函数的定义域为R; 命题q:不等式对一切正实数x均成立。 如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围。
设函数的图象经过点(,1) (1)求y=f(x)的解析式,并求函数的最小正周期和最值; (2)若,其中A是面积为的锐角△ABC的内角,且AB=2,求边AC和BC的长。