(某园林公司计划在一块为圆心,(为常数,单位为米)为半径的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.(1)设, ,用表示弓形的面积;(2)园林公司应该怎样规划这块土地,才能使总利润最大? 并求相对应的(参考公式:扇形面积公式,表示扇形的弧长)
已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点。 (1)当经过圆心C时,求直线的方程; (2)当弦AB的长为时,写出直线的方程。
已知函数. (1)求曲线在点处的切线方程; (2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点. (1)求证:△OAB的面积为定值; (2)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.
设(1)求不等式的解集; (2)若不等式的解集是非空集合,求实数m的取值范围.
已知曲线直线 将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程和普通方程; 设点P在曲线C上,求点P到直线的距离的最小值。