(本小题满分12分)已知椭圆C:的长轴长为4.(1)若以原点为圆心,椭圆短半轴长为半径的圆与直线相切,求椭圆焦点坐标;(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆交于M,N两点,直线PM,PN的斜率乘积为,求椭圆的方程.
(本小题满分12分) 已知函数(是自然对数的底数,). (1)当时,求的单调区间; (2)若在区间上是增函数,求实数的取值范围; (3)证明对一切恒成立.
(本小题满分12分) 已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切. (1)求椭圆的方程; (2)设直线与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.
(本小题满分12分) 已知数列的前n项和为,且(), (1)求证:数列是等比数列; (2)设数列的前n项和为,,试比较与的大小.
(本小题满分12分) 在直三棱柱中,是中点. (1)求证://平面; (2)求点到平面的距离; (3)求二面角的余弦值.
(本小题满分12分) 在一次人才招聘会上,有三种不同的技工面向社会招聘,已知某技术人员应聘三种技工被录用的概率分别是0.8、0.5、0.2(允许技工人员同时被多种技工录用). (1)求该技术人员被录用的概率; (2)设表示该技术人员被录用的工种数与未被录用的工种数的乘积,求的分布列和数学期望.