(本小题满分12分)已知数列的前n项和为,且(),(1)求证:数列是等比数列;(2)设数列的前n项和为,,试比较与的大小.
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域.
已知函数的定义域为集合,的定义域为集合,集合(1)若,求实数的取值范围.(2)如果若则为真命题,求实数的取值范围.
已知向量(1)若分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足的概率.(2)若在连续区间[1,6]上取值,求满足的概率.
已知圆的圆心与点关于直线对称,直线与圆相交于、两点,且,求圆的方程.
甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率.