(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;(Ⅲ)求证CE∥平面PAB.
(本小题满分13分)已知椭圆的中心在原点O,短轴长为,其焦点F(c,0)(c>0)对应的准线l与x轴交于A点,|OF|=2|FA|,过A的直线与椭圆交于P、Q两点.(1)求椭圆的方程;(2)若,求直线PQ的方程; (3)设,过点P且平行于准线l的直线与椭圆相交于另一点M. 求证F、M、Q三点共线.
(本小题满分12分)已知函数=,在处取得极值2。 (1)求函数的解析式;(2)满足什么条件时,区间为函数的单调增区间?(3)若为=图象上的任意一点,直线与=的图象切于点,求直线的斜率的取值范围。
(本小题满分12分)在一次篮球练习课中,规定每人最多投篮5次,若投中2次就称为“通过”,若投中3次就称为“优秀”并停止投篮.已知甲每次投篮投中的概率是.(I)求甲恰好投篮3次就通过的概率;(II)设甲投篮投中的次数为,求随机变量的分布列及数学期望E.
(本小题满分12分)已知△ABC的面积S满足, 且 , 与的夹角为.(I) 求的取值范围;(II)求函数的最小值.
(本小题满分12分)如图,在直四棱柱中,底面是梯形,且,,,是棱的中点.(1)求证:;(2)求点到平面的距离;(3)求二面角的大小.