(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;(Ⅲ)求证CE∥平面PAB.
某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分为150分),将成绩按如下方式分成六组,第一组、第二组、第六组. 下图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)求第四和第五组频率,并补全频率分布直方图; (Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面列联表(即填写空格处的数据),并判断是否有99﹪的把握认为“进入决赛的同学成为种子选手与专家培训有关”.
附:
已知向量,,设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)在中,若的面积为,求实数的值.
已知函数在(-∞,0)上是减函数,在(0,1)上是增函数,函数在R上有三个零点,且1是其中一个零点。 (Ⅰ)求的值;(Ⅱ)求的取值范围; (Ⅲ)设,且的解集为(-∞,1),求实数的取值范围。
已知函数的最小正周期为(Ⅰ)求的值; (Ⅱ)求函数在区间上的取值范围。
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足 (1)求△ABC的面积;(2)若b+c=6,求a的值.