(14分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2.(Ⅰ)求四棱锥P-ABCD的体积V;(Ⅱ)若F为PC的中点,求证PC⊥平面AEF;(Ⅲ)求证CE∥平面PAB.
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中把草坪分成面积相等的两部分,在上,在上. (1)设,求用表示的函数关系式; (2)如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请说明理由.
已知向量,,且,其中. (1)求和的值; (2)若,,求角的值.
设平面三点A(1,0),B(0,1),C(2,5). (1)求的值; (2)求向量与的夹角的余弦值; (3)试求与垂直的单位向量的坐标.
已知数列{}满足=3,= 。设,证明数列{}是等差数列并求通项。
已知(1)求; (2)当为何实数时,与平行, 平行时它们是同向还是反向?