(本小题满分13分)已知椭圆的中心在原点O,短轴长为,其焦点F(c,0)(c>0)对应的准线l与x轴交于A点,|OF|=2|FA|,过A的直线与椭圆交于P、Q两点.(1)求椭圆的方程;(2)若,求直线PQ的方程; (3)设,过点P且平行于准线l的直线与椭圆相交于另一点M. 求证F、M、Q三点共线.
商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问: (Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元? (Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
已知函数,(x∈(- 1,1). (Ⅰ)判断f(x)的奇偶性,并证明; (Ⅱ)判断f(x)在(- 1,1)上的单调性,并证明.
已知二次函数f(x)图象过点(0,3),它的图象的对称轴为x = 2, 且f(x)的两个零点的平方和为10,求f(x)的解析式.
定义在实数R上的函数y= f(x)是偶函数,当x≥0时,. (Ⅰ)求f(x)在R上的表达式; (Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明)
计算下列各式 (Ⅰ) (Ⅱ)