已知函数,,其中.(1)当时,求曲线在点处的切线方程;(2)若存在,使得成立,求实数M的最大值;(3)若对任意的,都有,求实数的取值范围.
如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知两点的纵坐标分别为.(1)求的值;(2)求角的大小.
在中,,,点在上,且,求的值.
已知函数的最小正周期为.(1)求的值;(2)将的图象向右平移个单位后,得到的图象,求的单调递减区间.
如图,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长.(Ⅰ)求,的方程;(Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.(i)证明:;(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由.
已知焦点在x轴的椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线(为长半轴,为半焦距)上.(1)求椭圆的标准方程;(2)求以OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值