记数列{}的前n项和为为,且++n=0(n∈N*)恒成立.(1)求证:数列是等比数列;(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.
某学校校办工厂有毁坏的房屋一座,留有一面14m的旧墙,现准备利用这面墙的一段为面墙,建造平面图形为矩形且面积为126的厂房(不管墙高),工程的造价是: (1)修1m旧墙的费用是造1m新墙费用的25%; (2)拆去1m旧墙用所得的材料来建1m新墙的费用是建1m新墙费用的50%.问如何利用旧墙才能使建墙的费用最低?
解关于x的不等式
已知集合,,求
已知:等差数列{}中,=14,前10项和. (Ⅰ)求; (Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和
已知等差数列的前四项和为10,且成等比数列 (1)求通项公式, (2)设,求数列的前项和。